<u>SF6270 – Controller zur Steuerung von Fräsmaschinen oder</u> <u>anderen Geräten mit 3 Schrittmotorachsen (XYZ)</u>

- einfache Außenbeschaltung
- Ansteuerung von 3 unipolaren Schrittmotoren
- Ansteuerung eines Fräsmotors
- kostenlose PC-Software zur Ansteuerung (WIN2000-WIN7)
- D PC-unabhängiges Timing (läuft praktisch mit fast jedem PC)
- I integrierter Kommandointerpreter (PR,PA,PD,IN,SP.....)
- 8 Tasten zur direkten XYZ-Steuerung an der Maschine ohne PC
- Tempo-Poti zur kontinuierlichen Drehzahlabsenkung der Schrittmotore
- LED-Anzeigen für Bereitschaft, Werkzeugwechsel und Schnittstelle (CTS)
- 3 anschließbare Endschalter (XYZ-Referenz)
- Dec-Interface: Bluetooth, RS232 (19200 Baud, 8N1) oder USB (per Adapter)
- I mit entsprechenden PowerFETs sind Lastströme bis 15 A schaltbar

Abbildung 1: SF6270, Übersicht

SFCHIP.de

Die Funktionen des SF6270 im Überblick

Der SF6270 ist entwickelt worden, um mit möglichst geringem Hardware-Aufwand eine Fräsmaschine steuern zu können. Übliche Schrittmotorsteuerungen benutzen oft immer noch die PC-Hardware (LPT), um mittels PC-Low-Level-Treiber die Maschine direkt anzutreiben. Ein kontinuierlicher Lauf kann nach dem Ende von DOS nicht mehr sichergestellt werden.

In unserer Schaltung übernimmt deshalb das Timing für die Schrittmotore komplett der SF6270. Dabei erfolgt die Steuerung der drei Schrittmotore und des Fräsmotors entweder direkt mittels der anschließbaren 8 Tasten oder mit üblichen Plotterbefehlen (z.B. PU, PD, PR, SP). Diese werden als ASCII-Text drahtlos (per Bluetooth) oder über die serielle Schnittstelle (USB) an den SF6270 gesendet. Ein preiswerter Adapter (RS232 nach USB) erlaubt den Anschluss auch an aktuelle PCs oder Notebooks, welche keinen RS232-Anschluß besitzen.

Zum Betreiben des SF6270 an einem Windows-PC (2000-WIN7) steht eine kostenfreie Software zur Verfügung, welche direkt Grafikdateien (Plotterfiles) anzeigen kann und an den Controller sendet (und fräst). Wer den Controller mit einem anderen Betriebssystem (DOS, MAC, Linux) betreiben möchte kann auch dies durch direktes Senden von Plotterbefehlen an die RS232-Schnittstelle tun, was bereits mit einem einfachen Terminalprogramm getestet werden kann. Der Hardware-Handshake (CTS an den PC) sollte aktiviert werden, da der Controller nur einen kleinen Puffer besitzt.

Ein optional anschließbares Potenziometer erlaubt die Temporeduzierung der Geschwindigkeit der drei Schrittmotore bis auf Null. Damit ist eine wesentlich bessere manuelle Positionierung möglich.

Im SF6270 können neben den Timing-Parametern und einigen statischen Parametern auch solche für bis zu 9 Werkzeuge gespeichert werden.

Für den optimalen Betrieb sollten 3 Referenzschalter (X/Y/Z) an der Maschine montiert sein für einen stabilen 0-Punkt aller Achsen. Der aktuelle Status kann durch 3 LEDs angezeigt werden.

Zur Ansteuerung der unipolaren Schrittmotore sind je Schrittmotor 4 PowerFETs vorgesehen (die Nutzung von bipolaren Schrittmotoren ist möglich,wenn eine spezielle Endstufe verwendet wird). Da die PowerFETs annähernd leistungslos gesteuert werden können, sind sie das einzige Verstärker-Element zwischen dem SF6270 und dem Motor.

Der Grundtakt für die Schrittmotore beträgt 8kHz. Die drei verwendeten Motore können nur mit dem gleichen Timing angesteuert werden, es wäre jedoch möglich, z.B. Für den Z-Motor eine andere Spindel oder einen anderen Motor zu verwenden, wenn die verwendeten Wege dann entsprechende umgerechnet werden. Die Motore werden PWM gesteuert, was erlaubt, diese über einen großen Betriebsspannungsbereich zu verwenden (ist die verwendete Spannung z.B. 3 x höher, kann die Pulsbreite auf 30% gesetzt werden). Die Pulsbreite bei Motorstillstand kann separat gesetzt werden, wenn z.B. gerade nur der X-Motor läuft, können der Y- und der Z-Motor mit geringerer Pulsbreite gehalten werden. Eine weitere Einstellung erlaubt es, nach einer bestimmten Anzahl Sekunden im Stillstand der gesamten Maschine alle Motore komplett abzuschalten. Die gesamte Stromaufnahme beträgt dann unter 40 mA.

SFCHIP.de

Die ASCII-Kommandos des SF6270

Der Controller besitzt einen eingebauten Kommandointerpreter. Über die serielle Schnittstelle werden die Plotterbefehle direkt sofort ausgeführt. Zusätzliche Kommandos zur Parametereinstellung der Controller-Konfiguration können ebenfalls mittels ASCII-Kommandos übertragen werden (PX reg, wert;).

Alle Wegangaben in den Befehlen folgen dem üblichen Maß von 1/40 mm, das heißt, ein Schritt entspricht 25 μ m = 0,025 mm. Natürlich kann nicht davon ausgegangen werden, dass ein Schritt des Schrittmotors genau diesem Maß entspricht. Deshalb errechnet der Controller automatisch über die Registereinträge 8 und 9 (Motorschritte für 100 mm), wie viel Schritte der Motor für den vorgegebenen Weg fahren muss.

Standard - Kommandos	Bedeutung
PU	Pen up, fährt das Werkzeug nach oben (-Z)
PD	Pen down, fährt das Werkzeug nach unten (+Z)
PR xxxx,yyyy	Pen relativ, fährt relativ +/-x und/oder +/- y Schritte
PA xxxx,yyyy	Pen absolut, fährt zur absoluten Position x/y
SP w	Set pen, benutzt den Parametersatz des Werkzeugs w $(w = 19)$
IN	Init: Variablen-Init, Referenzfahrt, Nullfahrt, SP1

Folgende Kommandos kann der SF6270 interpretieren:

Spezial - Kommandos	Bedeutung
NU	Fährt zum Nullpunkt, dann ist X=0, Y=0, Z=0
RE	Fährt zu den 3 Endschaltern (-X, -Y, -Z)
ZA z	Fährt die Z-Achse zur absoluten Position z
ZR z	Fährt die Z-Achse z Schritte relativ zur aktuellen Z-Position
РО	Potiposition abfragen: liefert einen Wert von 0-255
МО	Motorstrom des Fräsmotors abfragen
PX 0, reg	Extrafunktion: Auslesen des Wertes eines Konfigurations-Registers
PX reg, wert	Extrafunktion: Schreiben eines neuen Wertes ins Konfigurationsregist.

Werteangaben in den Parametern der Kommandos können in dezimal (z.B. 33, -290, 12000) oder hexadezimal (z.B. 0xf3, 0xa23e) erfolgen. Groß- oder Kleinschreibung wird nicht unterschieden (z.B. pu; PU; pa -10000,500;).

SFCHIP.de

Beispiel für ein Plotterfile

Ein Plotterfile ist eine Datei mit einer Kette von Plotter-Kommandos. Jedes Kommando wird entweder durch ein Zeilenende (CR/LF=ASCII13+ASCII10) oder durch ein Semikolon abgeschlossen:

Kommando (eine Plotterfile-Zeile)	Erklärung
IN	Initialisiert die Maschine, die Werkzeugposition ist danach an der Position 0/0/0 und die Konfiguration von Werkzeug 1 wird benutzt
PR400,400	Fahre 400 X und 400 Y Schritte (10 mm / 10 mm)
PD	Werkzeug zum Werkstück herunter fahren
PR500,0	Fräst 500 X-Schritte (500/40 = 12,5 mm)
PR0,1000	Fräst 1000 Y-Schritte nach oben (1000/40 = 25 mm)
PR-500,0	500 X-Schritte nach links fräsen (X<0)
PR0,-1000	Fräst 1000 Y-Schritte nach unten (Y<0)
PU	Fräser aus Werkstück herausfahren (nach oben)
PR1500,0	Nach rechts fahren $(1500/40 \text{ mm} = 37,5 \text{ mm})$
PD	Werkzeug wieder ins Werkstück eintauchen
PR1000,0	Fräst 1000 Schritte nach rechts
PR0,200	Fräst 1000 Schritte nach oben
PR-1000,0	Fräst 1000 Schritte nach links
PR0,-200	Fräst 200 Schritte nach unten
PU	Fräser aus Werkstück herausfahren (nach oben)
PA0,0	Fahre zum X-Y-Nullpunkt (X=0, Y=0)

PA0,0

Natürlich muss man nicht immer die Plotter-Kommandos manuell per Editor erzeugen. Einige Drucker oder Plotter können einen Ausdruck als PLT-Datei abspeichern. Es gibt gute Grafikprogramme, welche PLT-Files erzeugen oder exportieren können. Ein gutes Zeichen-Programm (Freeware) kann man auch hier downloaden:

http://www.cadstd.com/0C21F0/CadStd_Lite_V3_Install.exe

Windows-Software für die Steuerung des Controllers

Für die Steuerung des SF6270 ist eine kostenfreie Windows-Software (WIN2000-WIN7) verfügbar. Zwar lässt sich der Controller mit jedem Terminalprogramm und allen Betriebssystemen (DOS, MAC, LINUX) betreiben, jedoch muss man mit der verfügbaren Software keinerlei Einstellungen zur RS232- (USB-) Kommunikation vornehmen. Die Software sucht automatisch an allen verfügbaren COM-Schnittstellen nach einem angeschlossenen Controller. An den SF6270 sind bereits 8 Taster anschließbar um die Motore ohne angeschlossenen PC manuell steuern zu können. Doch auch innerhalb der Windows-Software sind Buttons verfügbar, um die Maschine per PC manuell zu steuern.

Abbildung 2: Windows-Freeware zur Steuerung des SF6270

SFCHIP.de

Die Bedienelemente des Hauptbildschirms:

- 1. Öffnen einer neuen PLT-Datei
- 2. Angeschlossenen Controller suchen und verbinden
- 3. Bild als Grafik-Datei abspeichern
- 4. Kommunikationsmonitor-Fenster öffnen
- 5. SF6270- Konfigurationsfenster öffnen
- 6. Anzeige des COM-Ports, mit welchem der SF6270 verbunden ist
- 7. Eingabe manueller Kommandos an den Controller (z.B. PD; PU; PR300,-500;)
- 8. Anzeige der aktuellen XYZ-Position
- 9. Komplette Fräsdatei verfahren
- 10. Einen Schritt der Fräsdatei verfahren
- 11. Automatischen Ablauf stoppen
- 12. Aktuelle XYZ-Position anfragen (aktualisiert 8)
- 13. Fräser verfahren: nach oben zur Z-Null-Position, Steps Schritte nach oben fahren. Steps Schritte nach unten fahren oder nach unten ins Werkstück fahren
- 14. Die Maschine in X- und/oder Y-Richtung (+/-) verfahren, die Zahl der Schritte je Click in Steps eintragen
- 15. Die Maschine zur Referenz- oder zur Nullposition verfahren (unterhalb der Nullpositionen sind jeweils die Referenzschalter Abbildung 3: Bedienelemente für X, Y und Z angebaut)

PLT-Datei öffn

Datei öffnen:

Nach betätigen von (1) im Hauptbildschirm kann eine neue Fräsdatei geöffnet werden, welche dann sofort auf der rechten Seite im Hauptbildschirm angezeigt wird. Mit (9) kann diese Datei sofort gefräst werden. <u>?</u>×

SFCHIP.de

<u>COM-Port suchen und verbinden:</u>

Nach betätigen von (2) im Hauptbildschirm wird nach einem angeschlossenen Controller gesucht. Wird dieser gefunden,

wird die Anzeige (6) entsprechend aktualisiert. Kann an keiner der verfügbaren Schnittstellen ein angeschlossener SF6270-Controller gefunden werden, wird dies durch eine Messagebox angezeigt.

Line-Monitor einschalten:

Nach betätigen von (4) im Hauptbildschirm wird ein neues Fenster eingeblendet, welches ständig und im Hintergrund die Kommunikation über den COM-Port anzeigt. Im oberen Teil werden die Kommando, welche zum Controller laufen angezeigt. Im unteren Fenster alles vom Controller zum PC. Auch wird die Anzahl der Bytes, welche gesendet und empfangen werden angezeigt.

Bei Bedarf kann diese Kommunikation in einer Protokolldatei aufgezeichnet werden.

Protokollierung gestartet ! 🔀		
C:\Pb\Data\HPGL\HPGLmill\rxprot.txt C:\Pb\Data\HPGL\HPGLmill\txprot.txt		
ОК		
Abbildung 8: Messagebox zur		
Protokollierung		

Abbildung 7: Monitor

kein SF6270-Controller gefunden !

Abbildung 6: Messagebox

CNC?

×

Die Bedienelemente im Konfigurationsfenster:

Nach betätigen von (5) im Hauptbildschirm wird das Konfigurationsfenster für das Programmieren des Controllers geöffnet. In diesem lassen sich alle Register des Controllers auslesen (2), schreiben (3) und vergleichen (4). Eine Konfiguration kann aus einer Datei eingelesen werden (5) oder in eine Datei geschrieben werden (6,7). Bei Bedarf kann mit (8) der Controller in den Auslieferungszustand gesetzt werden.

🗰 Setup Controller	
Motore, Timing Motortakt (2) 50 PWM bei Motorlauf (3) 90 Stillstand - PWM (4) 20 Schritte für 100mm (8+9) 1924 X-Null ab Ref. (1013) 781 Y-Null ab Ref. (1821) 1612	Controller - Output Echo - OK (6/0) Hex-Ausgabe (7/0) Echo - X/Y/Z/P (6/1) 9 Echo - Motorstrom (6/2) 9 Echo - Potiwert (6/3) Nur Debug (7/6) Echo - Counter (6/4) 10
Motore aus nach Sek (2223) 15 Fräser aus nach Sek (2425) 15 Halbschrittbetrieb (5/0) 🗖	Konfiguration Werkzeuge 1-9 WZ1 WZ2 WZ3 WZ4 WZ5 WZ6 WZ7 WZ8 WZ9 Frästempo-Faktor Z 3 4 5 6 7 8 9 10 11 Frästempo-Faktor X/Y 20 4 11 6 7 8 9 10 11 Z-Weg ab Z-Null 60 100 100 100 100 100 100 100
	n. WZ-Wechsel: Taste drücken
✓ ✓	5 6 7 8 В В В В В В В В В В Image: Second conditions В В В Image: Second conditions В В В Image: Second conditions В В В

Abbildung 9: SF6270 Konfigurationsfenster

In (1) können allgemeine Register gesetzt werden:

Register	Text	Min- Wert	Max- Wert	Bedeutung dieses Registers
2	Motortakt	2	125	Motortakt (ein Voll- oder Halbschritt) x 128µs
3	PWM bei Motorlauf	5	100	Motor ist während des Laufens zu 5-100% eingeschaltet
4	Stillstand -PWM	5	100	Wie Register 3, nur wenn der Motor steht
8,9	Schritte für 100mm	100	32000	Anzahl der Schritte, welche der Motor für 100mm benötigt
1013	X-Null ab Ref.	0	2000000	Anzahl Motorschritte zwischen Refernzschalter und X-Null
1417	Y-Null ab Ref.	0	2000000	Anzahl Motorschritte zwischen Refernzschalter und Y-Null
1821	Z-Null ab Ref.	0	2000000	Anzahl Motorschritte zwischen Refernzschalter und Z-Null
2223	Motore aus nach Sek	0	32000	Schrittmotore werden nach einer Anzahl von Sekunden nach dem Stillstand aller Motore komplett abgeschaltet
2425	Fräser aus nach X Sek	0	32000	Wie zuvor, jedoch wird der Fräsmotor ausgeschaltet
5 (Bit 0)	Halbschrittbetrieb	0	1	Wenn aktiviert, läuft Motor im Halbschritt-Betrieb

In (9) und (10) können die Register 6 und 7 gesetzt werden:

Register /Bit	Text	Bedeutung dieses Bits im Register
R6B0	Echo - OK	der Controller antwortet nach jedem Kommando mit einem "OK"
R6B1	Echo - XYZP	der Controller antwortet nach jedem Kommando mit der aktuellen XYZ-Position
R6B2	Echo - Motorstrom	der Controller antwortet nach jedem Kommando mit dem aktuellen Fräsmotorstrom
R6B3	Echo - Potiwert	der Controller antwortet nach jedem Kommando mit dem Spannungswert des Potis
R6B4	Echo - Counter	Antwort immer mit der Zahl der erhaltenen Kommandos (immer nach Enter oder ;)
R7B0	Hexausgabe	alle Ziffernausgaben des Controllers erfolgen in Hexadezimal (z.B. $42 = hex 0x2a$)
R7B4	Debug Zeichen	der interpretierte Befehl wird als Echo (mit Parametern) ausgegeben
R7B6	nur Debug	die Kommandos werden nicht ausgeführt (Motore reagieren nicht)
R7B7	Kommando-Echo	alle Zeichen zum Controller werden direkt wieder ausgegeben (RS232-Test)

In (11) können die Register für die Werkzeuge 1-9 (WZ1-WZ9) gesetzt werden:

Text	Min- Wert	Max- Wert	Bedeutung dieses Registers
Frästempo-Faktor Z	1	100	um diesen Faktor kann die Eintauchgeschwindigkeit verringert werden
Frästempo-Faktor X/Y	1	100	Faktor zur Verringerung X-/Y-Fahrgeschwindigkeit (wenn eingetaucht)
Z-Weg ab Z-Null	1	32000	Zahl der Z-Schritte, die der Fräsmotor eintaucht (ab dem Z-Nullpunkt)
nach WZ-Wechsel Taste drücken	0	1	wurde dem Controller ein Spx - Kommando gesendet, blinkt die WZ- Leuchtdiode (z.B. WZ4 = 4 x blinken), und es muß zur Bestätigung des Werkzeugwechsels eine der 8 Tasten am Gerät betätigt werden
Zminus = Zplus - Tempo	0	1	Genauso langsam, wie der Motor beim Eintauchen ins Werkstück verfährt, verfährt er auch beim Herausfahren aus dem Werkstück

Die Eingabefelder **(12)** ändern ihre Farbe: Liegt der Wert im erlaubten Bereich, wird der Wert mit grünem Hintergund angezeigt, außerhalb des Bereiches wechselt die Farbe auf rot. Beim Vergleich der Register im Controller mit denen der Eingabefelder beim Betätigen von **(4)** werden nicht übereinstimmende Register gelb angezeigt.

SFCHIP.de

Einstellung der Schrittmotor-Taktfrequenz

Takt = Register 2 x 128 μ s

SF6270-Register 2	Schrittfrequenz (Vollschrittbetrieb, 1 Schritt=90Grd)	Motorstrom bei PWM=50%
2 (Minimalwert)	2 * 128 µs = 256 µs	0,24
10	10 * 128 µs = 1280 µs	0,25
50	50 * 128 µs = 6,4 ms	0,28
100	100 * 128 µs = 12,8 ms	0,32
125 (Maximalwert)	125 * 128 µs = 16 ms	0,33
>125 nötig ?	Poti an Pin 35 verwenden !	

PWM Einstellung mit den Registern 3 und 4

SF6270-Register 3 (4)	Motorstrom (bei Register 2 =50)
10	0,06 A
25	0,13 A
50	0,28 A
75	0,45 A
90	0,60 A
100	0,72 A

PWM-Einstellung: wenn der Motor läuft mit Register 3 oder wenn der Motor steht mit Register 4

SFCHIP.de

Statische Grenzwerte

SF6270, statische Grenzwerte	min	typisch	max	Bemerkung
Versorgungsspannung Vcc	4,75 V	5 V	5,25 V	Pin 10, 30, 32
Stromverbrauch Icc	20mA	33mA	120mA	Pin 10, 30, 32
Betriebstemperatur	0 Grad	20 Grad	50 Grad	
Lagertemperatur	-20 Grad	20 Grad	80 Grad	
Pin Ausgangsspannung Low	0		0,7V	I=20mA
Pin Ausgangsspannung High	Vcc-1V		Vcc	I=20mA
Pin Ausgangsstrom Low			-20mA	(Pin 14-29, 33-40)
Pin Ausgangsstrom High			20mA	(Pin 14-29, 33-40)
Interner Pull-up-Widerstand	20kOhm		100kOhm	(Pin 1-8, 35, 37-39)

Tabelle 1: Statische Grenzwerte

Dynamische Kennwerte

Parameter	Nennwert	Bemerkung
Taktfrequenz	16 MHz	
Serielle Schnittstelle	19,2 kBaud 8N1	Rx, Tx, Flusssteuerung: CTS
Motortakt (90 Grad), min.	256 µs	Entspricht einem Schritt/Halbschritt
PWM (Motor läuft)	10 - 100%	Einstellbar mit Register 3
PWM (Motor steht)	10 - 100%	Einstellbar mit Register 4
Anzahl der konfigurierbaren Werkzeuge	SP1 - SP9	Ab Register 26

Tabelle 2: Dynamische Kennwerte

Abbildung 10: PC-Interface: Variante RS232(USB)

SFCHIP.de

3E

Abbildung 11: PC-Interface: Variante für Bluetooth

SFCHIP.de

Die Pin-Beschaltung des Controllers

SF6280 - Pin	Bedeutung
18	Taster zum manuellen Verfahren aller Achsen und weitere Sonderfunktionen
9	Reset, interner pull-up, Controller wird zurückgesetzt (Reset) bei Low-Pegel
10, 30, 32	Vcc, +5 Volt Versorgungsspannung (4,75 – 5,25 Volt)
11,31	Masse, 0 Volt
12,13	Schwingquarz (Takterzeugung des Controllers)
14	Rx (TTL-RS232), invertiertes Signal (Q14) vom PC (Tx)
15	Tx (TTL-RS232), Signal wird von Q15 invertiert und an Rx des PC geführt
16	CTS-Signal (& LED), Signal zum PC, wenn high, darf der PC Zeichen senden
17	LED-grün (Statusmeldung): 1 x blinken=OK, 5 x blinken=warte auf Tastendruck
1821	X-Motor, je an ein Gate des Power-FET, Drain an je eine Phase des X-Motors
2225	Z-Motor, je an ein Gate des Power-FET, Drain an je eine Phase des Z-Motors
2629	Y-Motor, je an ein Gate des Power-FET, Drain an je eine Phase des Y-Motors
33	Zum Power-FET (Schaltet direkt Fräsmotor oder Relais)
34	Vom RC-Glied (C7/R19), erkennt durch D14 die Stromaufnahme des Fräsmotors
35	Messeingang der Potispannung (Zur Drehzahlabsenkung der XYZ-Motore)
36	LED-rot (fordert, wenn aktiviert, per Blinksignal den Werkzeugwechsel an)
3739	Die Endschalter (Referenz) der XYZ-Achsen jeweils bei -X, -Y und -Z

Tabelle 3: Pin-Aufzählung

Die Funktion der Taster T1-T8:

T1 =	Shift-1-Taste
	gemeinsames Drücken mit T8 schaltet den Fräsmotor an
	gemeinsames Drücken mit T7 schaltet den Fräsmotor aus
	T1 + T2 + T8 setzt den SF6270 zurück in den Auslieferungszustand
т2=	Shift-2-Taste
	gemeinsames Drücken mit T8 fährt die Maschine in Referenzposition
	gemeinsames Drücken mit T7 fährt die Maschine in XYZ-Nullposition
т3=	-Y, fährt den Fräser nach vorn
T4=	+X, fährt den Fräser nach rechts
т5=	-X, fährt den Fräser nach links
Т6=	+Y, fährt den Fräser nach hinten
т7=	+Z, fährt den Fräser nach unten ins Werkstück
T8=	-Z, fährt den Fräser nach oben (heraus aus dem Werkstück)

SFCHIP.de

Auswahl und Daten der Treibertransistoren:

PowerFET	Parameter (Maximalwerte, getestet)	Preis (ca.)
BUZ100	40V, 6A (15A mit Kühlfläche)	1,20 Euro
IRFZ46N	40V, 4A (10A mit Kühlfläche)	0,90 Euro
BUZ11	35V, 3A (8A mit Kühlfläche)	0,75 Euro

Tabelle 4: Einsetzbare (getestete) Treibertransistoren

PowerFET	Parameter (Maximalwerte nach Datenblatt)	Preis (ca.)
IRLZ34N	40V, 6A (15A mit Kühlfläche)	0,72 Euro
IRLR024N	40V, 3A (8A mit Kühlfläche)	0,60 Euro
IRFU3707Z	25V, 8A (18A mit Kühlfläche)	0,93 Euro
IRFZ48N	45V,5A (9A mit Kühlfläche)	0,83 Euro
IRFZ34	45V, 4A (10A mit Kühlfläche)	0,64 Euro

Tabelle 5: Weitere, einsetzbare Treibertransistoren

Testschaltung für die zu verwendenden Transistoren:

Mit der nebenstehenden Testschaltung können die Power-FETs auf ihre Verwendbarkeit getestet werden. Mit P1 wird die Spannung am Gate auf 4,5 Volt eingestellt (in der Anwendung wird vom SF6270 ein Wert von mindestens 4,7V geliefert). Der Widerstand R1 sollte etwa den 2-fachen Wert der Impedanz des Motors haben, denn in der Anwendung wird R1 immer nur bis maximal 50% der Zeit eingeschaltet sein. Die Verlustleistung von Q1 errrechnet sich aus Ptot = Uon * Ion (z.B. 0,16V * 5A = 0,8W). Als Faustregel gilt: ohne Kühlfläche ist bis zu 1 Watt möglich.

Abbildung 12: Testschaltung für die Treibertransistoren

Taktung und PWM-Einstellung der XYZ-Schrittmotore:

Die Motore können drei verschiedene Betriebsmodi annehmen

- □ Motor läuft, der PWM-Wert dazu wird mit Register 3 eingestellt (5..100%)
- Motor in Standby, Einstellung per Register 4 (5..100%)
- Motorabschaltung wenn nach einer gegebenen Zahl von Sekunden kein X-, Y- oder Z-Schritt statt fand (Wert in den Registern 22+23)

Einstellung des Motortempos Register 2 (Wert von 2...125):

Der Grundtakt für die 3 Schrittmotore ist fest auf 128µs eingestellt. Mit Register 2 kann das Timing zwischen zwei Schritten (Halb- oder Vollschritt) auf von 2*128=256µs bis zu 125*128=16mS eingestellt werden. Mit einem einstellbaren Widerstand (Poti) an Pin 35 kann diese Zeit nochmals vervielfacht werden. Im Bild rechts ist Register 2 auf 10, Register 3 auf 100 eingestellt (10*0,128ms=1,28ms=1 Schritt=90 Grad).

SFCHIP.de

In dieser Einstellung ist der Schrittabstand 25*0,128ms=3,2ms. 360 Grad=12,8ms=4 Schritte. Der Motor ist mit PWM=30 nur 30% der Zeit eingeschaltet, aber 70% der Zeit ausgeschaltet.

Der Signalablauf zeigt, dass der stehende Motor mit nur 10% PWM getaktet wird. Dies

genügt oft, damit der Motor einrastet.

0.20 0.20 1ms _V=0.000V rms=0.138V T=0.34ms 1∕⊿T=2.941 kHz

SFCHIP.de

1ms

Abbildung 15: Motorsteht-Taktung, Reg2=25, Reg4=10

Mit Register 2 = 6 beträgt der Impulsabstand pro Schritt (90 Grad) 0,768 ms. Das High- / Low-Verhältnis ist hierbei 1:1, dies entspricht PWM = 50%.

0.20

0.20

T=3.84ms 1∕⊿T=0.260 kHz Abbildung 16: Motorlauf, Reg2=6, Reg3=50

Abbildung 17: Motor steht, Reg2=6, Reg4=50

Bei 100% PWM würde Dauerplus am Motoranschluss messbar sein, im Bild rechts ist aber PWM = 50% eingestellt, deshalb ist auch hier wieder das High- / Low-Verhältnis 1:1.

	 0.50	 0.50	 -		0.2ms	
Das Messergebnis an einem der 12 Power- FETs zeigt die Ansteuerung vom Controller an das Gate des Transistors (unten, 5 Volt). Am Drain (oberes Diagramm) ist der Schrittmotor angeschlossen (Betrieb an 16 Volt).	 					++-
		- 496	=0 171ms	141	-7 67/4	

SFCHIP.de

Abbildung 18: unten Q1-Gate, oben Q1-Drain (1:10 Teiler)

Signalverläufe der Datenübertragung:

	SFCHIP.de
--	-----------

Tabellenverzeichnis

Tabelle 1: Statische Grenzwerte	11
Tabelle 2: Dynamische Kennwerte	11
Tabelle 3: Pin-Aufzählung	14
Tabelle 4: Einsetzbare (getestete) Treibertransistoren	15
Tabelle 5: Weitere, einsetzbare Treibertransistoren	15

Abbildungsverzeichnis

.1
.5
.6
.6
.7
.7
.7
.7
.8
2
3
5
6
6
7
7
7
8
8
8
8
8

SFCHIP.de

Inhaltsverzeichnis

Die Funktionen des SF6270 im Überblick	2
Die ASCII-Kommandos des SF6270	3
Beispiel für ein Plotterfile.	4
Windows-Software für die Steuerung des Controllers.	5
Die Bedienelemente des Hauptbildschirms:	6
Datei öffnen:	6
COM-Port suchen und verbinden:	7
Line-Monitor einschalten:	7
Die Bedienelemente im Konfigurationsfenster:	8
In (11) können die Register für die Werkzeuge 1-9 (WZ1-WZ9) gesetzt werden:	9
Einstellung der Schrittmotor-Taktfrequenz.	.10
PWM Einstellung mit den Registern 3 und 4	.10
Statische Grenzwerte	.11
Dynamische Kennwerte.	.11
Die Pin-Beschaltung des Controllers	.14
Auswahl und Daten der Treibertransistoren:	.15
Testschaltung für die zu verwendenden Transistoren:	.15
Taktung und PWM-Einstellung der XYZ-Schrittmotore:	.16
Einstellung des Motortempos Register 2 (Wert von 2125):	.16
Signalverläufe der Datenübertragung:	.18